Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We conducted a GPU-accelerated reprocessing of $$\sim 87~{{\ \rm per\ cent}}$$ of the archival data from the High Time Resolution Universe South Low Latitude (HTRU-S LowLat) pulsar survey by implementing a pulsar search pipeline that was previously used to reprocess the Parkes Multibeam Pulsar Survey (PMPS). We coherently searched the full 72-min observations of the survey with an acceleration search range up to $$|50|\, \rm m\, s^{-2}$$, which is most sensitive to binary pulsars experiencing nearly constant acceleration during 72 min of their orbital period. Here we report the discovery of 71 pulsars, including six millisecond pulsars, of which five are in binary systems, and seven pulsars with very high dispersion measures (DM $$\gt 800 \, \rm pc \, cm^{-3}$$). These pulsar discoveries largely arose by folding candidates to a much lower spectral signal-to-noise ratio than in previous surveys and by exploiting the coherence of folding over the incoherent summing of the Fourier components to discover new pulsars as well as candidate classification techniques. We show that these pulsars could be fainter and on average more distant as compared with both the previously reported 100 HTRU-S LowLat pulsars and the background pulsar population in the survey region. We have assessed the effectiveness of our search method and the overall pulsar yield of the survey. We show that through this reprocessing we have achieved the expected survey goals, including the predicted number of pulsars in the survey region, and discuss the major causes why these pulsars were missed in previous processing of the survey.more » « less
-
ABSTRACT The HTRU-S Low Latitude survey data within 1° of the Galactic Centre (GC) were searched for pulsars using the Fast Folding Algorithm (FFA). Unlike traditional Fast Fourier Transform (FFT) pipelines, the FFA optimally folds the data for all possible periods over a given range, which is particularly advantageous for pulsars with low-duty cycles. For the first time, a search over acceleration was included in the FFA to improve its sensitivity to binary pulsars. The steps in dispersion measure (DM) and acceleration were optimized, resulting in a reduction of the number of trials by 86 per cent. This was achieved over a search period range from 0.6 to 432-s, i.e. 10 per cent of the observation time (4320s), with a maximum DM of 4000 pc cm−3 and an acceleration range of ±128 m s−2. The search resulted in the re-detections of four known pulsars, including a pulsar that was missed in the previous FFT processing of this survey. This result indicates that the FFA pipeline is more sensitive than the FFT pipeline used in the previous processing of the survey within our parameter range. Additionally, we discovered a 1.89-s pulsar, PSR J1746-2829, with a large DM, located 0.5 from the GC. Follow-up observations revealed that this pulsar has a relatively flat spectrum (α = −0.9 ± 0.1) and has a period derivative of ∼1.3 × 10−12 s s−1, implying a surface magnetic field of ∼5.2 × 1013 G and a characteristic age of ∼23 000 yr. While the period, spectral index, and surface magnetic field strength are similar to many radio magnetars, other characteristics such as high linear polarization are absent.more » « less
-
ABSTRACT We present the discovery of 37 pulsars from ∼ 20 yr old archival data of the Parkes Multibeam Pulsar Survey using a new FFT-based search pipeline optimized for discovering narrow-duty cycle pulsars. When developing our pulsar search pipeline, we noticed that the signal-to-noise ratios of folded and optimized pulsars often exceeded that achieved in the spectral domain by a factor of two or greater, in particular for narrow duty cycle ones. Based on simulations, we verified that this is a feature of search codes that sum harmonics incoherently and found that many promising pulsar candidates are revealed when hundreds of candidates per beam even with modest spectral signal-to-noise ratios of S/N∼5–6 in higher-harmonic folds (up to 32 harmonics) are folded. Of these candidates, 37 were confirmed as new pulsars and a further 37 would have been new discoveries if our search strategies had been used at the time of their initial analysis. While 19 of these newly discovered pulsars have also been independently discovered in more recent pulsar surveys, 18 are exclusive to only the Parkes Multibeam Pulsar Survey data. Some of the notable discoveries include: PSRs J1635−47 and J1739−31, which show pronounced high-frequency emission; PSRs J1655−40 and J1843−08 belong to the nulling/intermittent class of pulsars; and PSR J1636−51 is an interesting binary system in a ∼0.75 d orbit and shows hints of eclipsing behaviour – unusual given the 340 ms rotation period of the pulsar. Our results highlight the importance of reprocessing archival pulsar surveys and using refined search techniques to increase the normal pulsar population.more » « less
An official website of the United States government
